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1. Introduction

Conventional databases store only the latest snapshot of the enterprise, and lack the capability to record and
process time-varying aspects of the real world. Steady progress in disk storage technology, in terms of both
capacity and cost, coupled with emerging new technologies such as optical disks has drawn attention to database
management systems with temporal support or version management. Bibliographical surveys, however, show that
most effort has focussed on conceptual aspects such as modeling, query languages, and the semantics of time
[Bolour et al. 1982, McKenzie 1986]. Little has been written on issues concerning the implementation of temporal
databases.

The performance of a temporal database management system (TDBMS) depends on many factors, including
available access methods, the specific query processing strategy, and the size and composition of the stored data.
There are two basic methods available to characterize the effectiveness of a TDBMS, the empirical approach and
the analytic approach.

In the empirical approach, a system is implemented, and the actual performance on typical queries is
instrumented. The primary advantage is that, if the measurement was done correctly, the performance measures can
be trusted. The disadvantage is that the effort required for implementation is quite large, restricting implementation
to at most a few access methods.

In the analytic approach, a mathematical characterization of the performance of a TDBMS is developed.
Such a model can predict the performance of queries. This approach mirrors the empirical one in that the effort is
much smaller, but the validity of the results are more questionable. We adopt the analytic approach, and propose a
model to analyze the input and output cost of temporal queries on various access methods. The model consists of
four transformations through a series of intermediate expressions based on the characteristics of database/relations
and storage devices. We validate the model by comparing the /O cost estimated from the analysis using the model
with the actual cost measured from a prototype temporal DBMS.

In Section 2, we define the terms temporal database and temporal query, then review previous work on
performance models. In Section 3, we present the details of our model, defining the intermediate expressions and
describing the transformations. In Section 4, we show examples to analyze the 1/0 cost of temporal queries using
the model, and also compare the cost estimated from the analysis with the actual cost measured from the prototype
temporal database system described elsewhere [AiM & Snodgrass 1986]. Finally in Section 5, we discuss how the
model can be built into a system to automate performance analysis or optimization.

2. Previous Work

The term temporal database in the generic sense refers to databases with some degree of support for storing
and processing time-dependent data [Ariav & Morgan 19821. Examples include engineering databases containing a
collection of design versions, personnel databases containing the history of employee records, and statistical
databases containing time series data from scientific experiments.

If we look into the characteristics of time supported in these databases, we can identify three orthogonal kinds
of time, valid time, transaction time, and user-defined time [Snodgrass & Ahn 1985, Snodgrass & Ahn 1986].
Depending on the capability to support either or both of valid time and transaction time, databases are classified into
four types: snapshot, rollback, historical, and temporal. Snapshot databases are conventional databases without
temporal support. Rollback databases support transaction time, recording the history of database activities.
Historical databases support valid time, recording the history of a real world. Databases supporting both kinds of
time are termed temporal databases in the narrower sense, as is used in this paper, to emphasize the importance of
both kinds of time in database management systems.

In the past few years, approximately a dozen query languages have been designed to extract information from -

a time-varying databases. In this paper, we adopt TQuel [Snodgrass 1987] to express temporal constructs such as
historical queries and rollback operations. TQuel extends Quel (Held et al. 1975] to provide query, data definition, I]
and data manipulation capabilities supporting all four types of databases. It expresses historical queries by []
augmenting the retrieve statement with the when predicate to specify temporal relationships among
participating tuples, and the valid clause to specify how the implicit time attributes are computed for result
tuples. The rollback operation is specified by the as of clause for the rollback or the temporal databases. These
added constructs utilize temporal relationships such as precede, overlap, extend, begin of, and -
end of.
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TQuel augments the append, delete, and replace statements with the valid and the when
clauses in a similar manner. It also supports the create statement to specify the temporal type of a relation. A
formal tuple calculus semantics has been developed for all the TQuel statements. Since TQuel is a superset of Quel,
both syntactically and semantically, all legal Quel statements are also valid TQuel statements.

A series of models for storage structures, with varying complexity and descriptive power, have been proposed
over the past 15 years. In the remainder of this section, we review the major models to provide the motivation for
our proposed model. Hsiao and Harary proposed one of the first formal models to analyze and evaluate generalized
file organizations [Hsiao & Harary 1970). The model represents the directory of a file with a set of sequences
(Ki , nihi; aiI,ai2 .... au,) for each keyword Ki, where ni is the number of records containing the keyword, hi is
the number of sublists holding such records, and ai, is the starting address of the hi 'th sublist. By varying the
number and the length of sublists for each keyword, it can represent structures such as multilist files, inverted files,
indexed sequential files, and some combinations of the files.

Severance, noting that this one dimensional model is unable to represent files which are not strictly list
oriented, introduced a two-dimensional model [Severance !Q75]. One dimension is whether the successor node is
physically contiguous (address sequential) or connected through a pointer (pointer sequential). The other
dimension is whether there is an index for the dam (data indirect) or not (data direct). The four comers of this
two-dimensional space represent sequential files, inverted files, list files, and pointer sequential inverted files.

Yao observed that Severance's model represents only a one-level index, imprecisely models indexed
sequential files, and cannot model cellular list organizations [Yao 1977]. Instead, Yao represented the process of
searching a file by an access tree composed of hierarchical levels comprised of attributes, keywords, accession lists,
and virtual records. Based on this access path model, generalized access algorithms and cost functions for search
and retrieval were presented. He also presented a file retrieval algorithm and an associated cost function for a single
file query in a disjunctive normal form. Some of the parameters for the query were the total number of attributes
and the average number of conjuncts in a query. Since this model has the underlying structure of the tree shaped
access path, it is suitable for directory based file organizations such as inverted files, but is less applicable to files
with other structures.

Yao later proposed a model representing the systematic synthesis of a large collection of access strategies for
two relation queries [Yao 1979]. He identified 11 basic access operators such as restriction, join, record access, and
projection, then presented without derivations cost equations for each operator measured in terms of page accesses.
Permuting these operators gave 7 classes of processing algorithms for each relation, and 339 different algorithms for
two relation queries, whose cost could be computed from cost equations of each operator. He modeled the storage
structures with parameters indicating the existence of clustering, parent, child or chain links among relations, and
the existence of clustering or non-clustering index for each attribute of relations. However, the model of [Yao
1977] was not used for this study.

Batory and Gotlieb proposed a unifying model, which decomposes physical databases into simple files and
linksets [Batory & Godieb 1982]. The model for simple files characterizes the structures of records in a single file
with a set of parameters such as design parameters, file parameters, and cost parameters. The model for linksets
describes relationships between records in two simple files with parameters such as parent, child, cell size, and
implementation methods. Basic operations and associated cost functions were also defined for simple files and
linksets. This model is based on a collection of parameters that can describe the results of analyzing individual file
organizations. Batory later augmented the unifying model with a transformation model that aids the process of
conceptual-to-internal mappings [Batory 1985]. The model defines a set of elementary transformations that
decompose conceptual files and links to their underlying internal files and linksets.

The models have made significant contributions in evaluating the performance of file organizations and access
methods. Most of these models, however, were concerned with file structures; none of them has addressed thewhole problem of evaluating the access cost given relational, let alone temporal, queries as input. Furthermore,
special characteristics of query processing and access methods for temporal databases were beyond the scope of the

existing models.

3. A New Model
Performance analysis of a database management system involves many factors such as query processing

strategy, characteristics of stored data, access methods, and storage devices. We want to analyze the input and
output cost for temporal queries on the database using various access methods. Hence we need a model which can
characterize various phases of query processing in temporal database management systems. For this purpose, we
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developed a model consisting of four transformations through a series of intermediate expressions based on the
characteristics of database/relations and storage devices. We describe the details of the intermediate expressions
and the transformations.

3.1. Transformation to the Algebraic Expression

TQuel is a language based on the uple calculus, that is non-procedural. To describe the process of evaluating
TQuel queries procedurally, we first define the algebraic expression. Then we discuss how a temporal query is
transformed to an algebraic expression.

3.1.1. Algebraic Expression

An algebraic expression (AE) consists of algebraic operators and connectives. Algebraic operators are of
three types: conventional, temporal, and auxiliary. These operators are more abstract than other temporal algebras
[Clifford & Tansel 1985, McKenzie 1988, Navathe & Ahmed 1986]. The reason is that, while the other algebras
are based on a single representation (e.g. tuple time stamping or attribute time stamping), we want our operators to
accommodate many alternative representations.

The conventional relational operators include Select, Project, Join, Union and
Difference. These operators perform the same actions as their snapshot counterparts; any temporal information
is handled identically to the values from the non-temporal attributes. Select has two parameters: a relation and$ a predicate to specify the constraint that result tuples must satisfy. Project takes as parameters a relation and a
set of attributes to be extracted from the relation. Join is to perform @-join of two relations given as the first two
parameters. The third parameter, the join method, specifies how to perform the join operation, since there are many
ways to perform the operation. The fourth parameter is the predicate specifying how to combine information from
two relations. Both union and Difference take twc relations as parameters, performing set addition and set
subtraction respectively.

Temporal operators are included for temporal query constructs in TQueL When performs temporal
selection on a relation according to a temporal predicate applied to the values of valid time attributes. AsOf also
performs temporal selection on a relation, but takes two time constants as parameters to compare with the values of
transaction time attributes. Valid performs temporal projection, determining the value of the attribute valid
from, valid to, or valid at.

Auxiliary operators are introduced to account for miscellaneous operations that do not change the query result
but affect the query cost significantly. Tenporary is used to create and access a temporary relation for the result
of the operation marked by its parameter. Sort is used to sort tuples in the relation specified by the first
parameter, using the remaining parameters as the key attributes for sorting. Reffozmat is used to change the
structure of the relation specified by the first parameter to the form given by the second parameter, using the
remaining parameters as the key attributes.

These algebraic operators can be combined together through connectives which specify information on
ordering and grouping of the component operators. Two operators may be ordered in sequence, expressed as

<expression ,> ; <expression2>

specifying that <expression ,> should complete execution before <expression2> starts. Or they may be in parallel,
denoted by

<expression ,> , <expression2>

when two evaluations can proceed concurrently. Grouping of operators to delimit a query is denoted by a pair of
braces, ' C and 'I', while a pair of square brackets, ' [' and '] ', represent a set of operators which can be evaluated
simultaneously for each tuple. These connectives can characterize different strategies for evaluating a query
expressed by a combination of algebraic operators.

An operator may have a label which can be referred to in other operators such as Temporary. By using
labels, we can eliminate deeply nested parentheses common in algebraic descriptions of a query. Thus an algebraic
expression, describing TQuel queries in a procedural form, is a combination of labels, algebraic operators with
appropriate parameters, and connectives. Abbreviated BNF syntax of the algebraic expression is shown in
Appendix A. 1.

3



3.1.2. Transformation

A query in TQuel can be expressed in terms of algebraic expressions. In general, there are several of such
mappings that provide the same result, but exhibit different I/O costs. For example, the query

range of h is relation_h
retrieve (h.id, h.seq) where h.id = 500

can be mapped to

AE-: { LI: Select (h, h.id - 500);
Project (Li, h.id, h.seq) I

This expression selects tuples with id = 500 from the relation h, then extracts attributes id and seq from the
result of the previous operation labeled as Ll. Since the two operations are separated by ';', they must execute

• "sequentially. The same query can be mapped to

AE-2: [ Li: Select (h, h.id - 500);
Project (LI, h.id, h.seq) ]}

This expression is similar to AE-1, but specifies that Select and Project can be evaluated together (still
sequentially) for each tuple. Thus the need for a temporary file to store intermediate results between the two
operations is explicitly eliminated.

For the query

range of h is relation_h
range of i is relation_i
retrieve (h.id, i.id, i.amount)

*. ,, where h.id - i.amount
:- when h overlap i and i overlap "now"

we can list three different algebraic expressions.

AE-3: i Li: Join (h, i, TS, h.id - i.amount and h overlap i);
L2: When (Li, i overlap "now");

Project (L2, h.id, i.id, i.amount) I

This expression specifies Join using tuple substitution (TS) of two relations, h and i, followed by temporal
selection When, followed by Project, all in sequence. Another example:

AE-4: { Li: When (i, i overlap "now");
L2: Project (LI, i.id, i.amount, i.validfrom, i.validto);
L3: Join (h, L2, TS, h.id - i.amount and h overlap i);

Project (L3, h.id, i.id, i.amount)

This expression is functionally equivalent to AE-3, but differs, perhaps markedly, in performance.. AE-4 specifies
that the when operation is first executed to select tuples from the relation i whose valid to attribute is
"now", then four attributes are extracted from the result tuples, then the result is joined with the relation h, and
finally three attributes are extracted. However, AE-4 does not provide information on what operations can proceed
together and whether a temporary relation is needed.

AE-5: (I LI: When (i, i overlap "now");
L2: Project (LI, i.id, i.amount, i.validfrom, i.validto)];
L3: Temporary (L2);
L4: Join (h, L3, TS, h.id - i.amount and h overlap i);

Project (L4, h.id, i.id, i.amount) ]}
This expression is similar to the previous expression AE-4, but specifies that When and Project can be
evaluated together on each tuple, the intermediate result is stored into a temporary relation, and Join and
Project can also be performed together.

4
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3.2. Transformation to the File Primitive Expression
In this section, we define the file primitive expression to characterize the input and output activities involved

in processing a query. We also discuss how to represent information on the characteristics of data stored in
database/relations. We then describe how the algebraic expression is transformed to the file primitive expression.

3.2.1. File Primitive Expression
A file primitive expression represents the process of accessing a file in terms of two file primitives: Read

and Write. Both of the primitives take parameters such as the access method, the size of a file, or the length of
the overflow chain. The access methods include heap, hash, isam and btree. Such an expression
provides more detail than an algebraic expression how a query is evaluated.

Primitives are combined to form an arithmetic expression, called the file primitive expression (FPE), to
describe the situation when one or more primitives are repeated or executed together to perform an algebraic
operation. The primitives take an access method and one or more constants denoting, for example, the size of a file

Cie length of the overflow chain. The syntax of the file primitive expression is shown in Appendix A.2.
For example, a file primitive expression may be as simple as:

FPE-1: Read (Hash, 0)

specifying one hashed access without any overflow records, or more complex like

FPE-2: Read (Heap, 128) +
( Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) 3 - 1) +
Read (Heap, 19) +
Read (Hash, 0) * 1024

specifying one read from the heap of 128 blocks, two read's from the heap of 19 blocks, three write's to the heap of
19 blocks, another read from the heap of 19 blocks, and finally a hashed access repeated 1024 times.

3.2.2. Characteristics of Database/Relations
To transform the algebraic expression to the file primitive expression, we need information on the

characteristics of relations comprising a database. Typical catalog relations in conventional DBMS's hold
information for all relations such as relation names, temporal types, storage structures, attribute counts, attribute
names, attribute formats, atnbute lengths, key attributes, tuple lengths, and tuple counts.

Additional information on the data contents is needed so that the algebraic expression can be transformed to
the file primitive expression. Examples are selectivity and distribution of attribute values, volatility of data, and the
update count in case of a temporal database. Various parameters for each relation and attribute are specified. BNF
syntax to represent the characteristics of database/relations is given in Appendix A.3.

It is a difficult problem to estimate the response set of a query and the number of block accesses without
actually examining stored data, though there has been significant research on the subject. Inaccurate
characterization of stored data may account for a large portion of the discrepancy, if any, between the analysis result
and the actual measurement.

3.2.3. Transformation
We can transform the algebraic expression to the file primitive expression. For example, the algebraic

expression AE-2 can be transformed to the file primitive expression FPE- I shown earlier, assuming that the relation
h is hashed on the attribute id with no overflow records.

There are a large number of valid combinations for algebraic expressions even for conventional snapshot
databases. The problem becomes more complicated when historical queries and rollback operations for temporal
databases are introduced. Rather than listing all the possible algebraic expressions, we identify basic constructs
occurring in temporal queries, and transform the subset of algebraic expressions, composed of such constructs, to
file primitive expressions. The transformation is dependent on the characteristics of database/relations described
above.
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Algebraic operators involve either one relation or two relations. Select, Project, When, AsOf,
Valid, Temporary, Sort, and Reformat operate on one relation, while Join, Union, and
Difference operate on two relations. The characteristics of each operator is discussed in terms of the file
primitive expression.

" Select (relation, predicate)
The first parameter relation is the base relation for the operation, and the second parameter predicate specifies
constraints on the relation that result tuples must satisfy. Performance of Select depends on various
factors such as the structure of the relation, the type of the predicate, and the characteristics of data stored in
the relation.

(1) If the predicate fully specifies a key for a random access path existing for the relation, the file primitive
expression is:

Read (access path, n)

where the access path may be hash, isam, btree or other desired access method. The second
parameter n is the length of the overflow chain, which is determined from the characteristics of
database/relations.

(2) Otherwise, the file primitive expression is:

Read (Heap, b)

where b is the size of the relation in blocks, meaning the relation is sequentially scanned.

0 Project (relation, attribute list)
This operation scans the relation to extract a list of attributes, attribute list, hence its file primitive expression
is:

Read (Heap, b)

where b is the size of the relation in blocks.

* Join (relation,, relation2, join method, predicate)
There are several methods to perform a join, such as TS (tuple substitution), BS (block substitution), and
SM (sort & merge). Let

t, : the number of tuples in relation 1
t2  the number of tuples in relation 2
b I the size of relation I in blocks
b2 the size of relation2 in blocks

Each method is briefly described with the corresponding file primitive expression.

(1) TS : tuple substitution method
Each tuple in the smaller relation is substituted to select tuples from the other relation satisfying the
predicate.

Read (Heap, b.) +
FPE 2 * t1

assuming tI < t2. FPE 2 is the file primitive expression for

Select (relation 2, predicate')

where predicate' is the predicate with the tuple variable for relation, replaced by each tuple in
relation 1.

0O, (2) BS : block substitution method
For each block in the smaller relation, the other relation is scanned. In this process, all tuples in one
block of each relation are -joined according to the predicate. It is faster than tuple substitution
especially when there is no random access path to evaluate the predicate.

Read (Heap, b1 ) +
Read (Heap, b 2 ) * b1

where bI < b 2.

"i',', '1 6



(3) SM sort & merge method
Each relation is sorted, then the resulting relations are scanned in parallel to merge tuples satisfying the
predicate.

Read (Heap, b1) +
Read (Heap, b2) +
FPE (Sort (relation,, attribute list)) +
FPE (Sort (relation2 , attribute list))

where FPE (Sort (...)) is the file primitive expression for Sort to be described later, and attribute list
is the list of attributes participating in the predicate. If both relations are already in order, the file
primitive expression is simply

Read (Heap, b1) +
Read (Heap, b2)

0 Union (relation,, relation2) and Difference (relation1, relation2)
Both operators need to scan two relations, so the file primitive expression is

Read (Heap, bt) +
Read (Heap, b2)

where bI and b2 are the sizes of relation, and relation 2, respectively, in blocks.

" When (relation, temporal pred)
When is similar to Select, where the temporal predicate, temporal pred, is restricted to a single variable
predicate specifying the constraint on the valid time attributes that result tuples must satisfy. Hence the file
primitive expression is, like Select,

Read (access path. b)

Or

Read (Heap, b)

depending on the type of the predicate, and the existence of a random access path to satisfy the temporal
predicate.

0 Asof (relation, ti, t2)
AsOf is identical to

Select (relation, t1 :5 transactionstop and transaction-start <t 2 )

Hence the file primitive expression is similar to that for Select.
" Valid (relation, FromTolAt, temporal expr)

Valid is similar to Project, where the temporal expression, temporal expr, is restricted to a single
variable expression with the domain of time values. The file primitive expression is

Read (Heap, b)

where b is the size of the relation in blocks.

STemporary (label)
This operator, as shown in AE-5, is to create a temporary relation, and to store the intermediate result from
the previous operation marked by the label. Its file primitive expression is in general:

0O ( Read (Heap, b) * k,-l, +
Write (Heap, b) * k,-/

where b is the number of blocks in the resulting relation, and k,, 1,, A;., l, are implementation dependent
constants. In a prototype used for comparison, each block, except the last one, of a temporary relation is read
twice and written three times, so k, = 2, kw = 3, and 1, = l, = 1.

(Read (Heap, b) 2 -4.
Write (Heap, b) * 3 - 1

7



e Sort (relation, attribute list)
This is used to sort the relation using a list of attributes, attribute list, as key attributes for sorting. Since it
takes 0 (b x log. b) block accesses to sort a file of b blocks using the m-way sort-merge, the file primitive
expression is in general:

Read (Heap, b1) * 0 (log, bl) +
Write (Head, b1 ) * 0 (log,, b2) +
Read (Heap, b2) * 0 (log,, b2) +
Write (Head, b2) * 0 (log,bz)

* Reformat (relation, storage spec, attribute list)
This is to reformat the relation to the storage structure, storage spec, using a list of attributes, attribute list, as
key attributes. Its file primitive expression is in general:

( Read (Heap, b) +
Write (Heap, b) +
FPE (Sort (relation, attribute list))

where FPE (Sort (...)) is the file primitive expression for Sort in case we need to sort the relation for
reformatting.
Thus far, each operator has been discussed in terms of file primitive expressions. An algebraic expression

with multiple operators can be transformed to the file primitive expression which is the sum of the file primitive
expressions for the component operators. An exception to this rule is the case when Project or valid follows
Select, Join, or When, and the two operations are grouped together by a pair of square brackets. In this case,
the file primitive expression is simply that of the first operation. For example, an algebraic expression

{[ Li: Select (h, id - 500);

Project (Li, h.id, h.seq) 11

is transformed to

Read (Hash, 0)

performing Project effectively for free.
In summary, an algebraic expression is transformed to a file primitive expression, which contain Read and

Write operations, by replacing each algebraic operator according to the rules shown above. The resulting
expression may contain constants, whose values are supplied by the characteristics of database/relations.

3.3. Transformation to the Access Path Expression
We define the access path expression which represents the path taken through the storage structure to satisfy

an access request represented by a file primitive expression. An access path is usually confined to a single file, but it
may involve more than one file, which is the case with storage structures for temporal databases discussed
elsewhere [Ahn 1986]. We section first describe the access path expression for a single file, and then extend it for
multiple files.

3.3.1. Access Path Expression for a Single File

The conceptual unit of an access in the access path expression is a node, which consists of one or more
physically contiguous records participating in the access. The node itself consists of one or more records,
depending on the underlying storage structure.

A set of nodes are connected together to make up an access path either directly or indirectly. In simple cases,
an access path is directly represented as a set of nodes. In other cases, it helps to conceptualize an access path as
being composed of some components, each of which is itself a set of nodes. This process of hierarchical
decomposition may proceed for as many levels as useful.

The process of decomposition is restricted to three levels, which is sufficient to describe the storage structures
discussed in this paper. However, it is straightforward to extend it to incorporate more levels. In this three level
hierarchy, a set of nodes are grouped to make up a chain, and a set of chains compose an access path. Therefore, an
access path through a single file, or simply a file path, is represented as a set of chains, each of which is a set of
nodes. As mentioned above, each node itself consists of one or more records.

8



The access path expression identifies a fixed number of modes, specifying how components such as nodes,
* chains, or file paths are connected with one another. We can classify the modes as either guided or searched.

Guided: If a random access mechanism exists to locate the component
H: the address is computed by a hash function
p: the address is provided by a pointer
A: the component is physically adjacent to its predecessor
S: the component shares the same starting address with its higher level component
M: the component is in the main memory

Searched: If no random access mechanism exists
0: the file is ordered, so logarithmic search is possible
U: the file is unordered, so sequential search is necessary.

This process of hierarchical decomposition, decomposing an access path or a file path into chains, a chain
into nodes, and a node into records, is captured into a single expression called the access path expression (APE). A
canonical form for an access path expression, whose syntax is shown in Appendix A.4, is

(Mode count, (Mode count2 (Mode count3 )4 )+ )
where

count I is the number of chains in the file path,
count2 is the number of nodes in the chain, and
count 3 is the number of records in the node.

As described earlier, the components in the three level hierarchy are the access path, chains, and nodes. Each
component is described by a (Mode, count) pair, where the mode tells how to locate the component, and the count

4shows the number of subcomponents in it. Then the (Mode, count) pair is followed by a list of descriptors for its
subcomponents enclosed in parentheses. The level of a component in the hierarchy is determined by the depth of
enclosing parentheses. The outermost parentheses represent the access path, while the innermost parentheses
represent a node which is defined to consist of records.

Each subcomponent is described in sequence, but if all the successors of a certain subcomponent are the
same, they need not be repeated. Therefore, if the number of descriptors is smaller than the specified count, the
remaining subcomponents are assumed to have the same descriptor as the last one. When a component has only one
subcomponent and the mode of the subcomponent is S (meaning the subcomponent shares the same starting
location), the extra level of decomposition does not provide any further information, and may be omited.

In the access path expression, a set of file parameters are used to quantify physical properties of a file. Some
of the parameters are:

f: number of records in a file
b: number of records in a block
r: number of bytes in a record, and
n : number of records to be accessed.
Some examples of access path expressions are described now for various access methods.

Example- I. Scanning a sequential file:
The access path can be considered as an unordered collection of f records. The access path expression is:

(U f
Since the head of the path expression is U, the path needs to be searched sequentially. The access path can
also be regarded as consisting of a single node, which hasf records. Then the expression becomes:

(U 1 (S f))
, We can follow the three level hierarchy by introducing the level of chain. Then the access path has a single

chain, which has one node. The node itself consists off records.

(U 1 (S 1 (S f)))

Example-2. Accessing a hashed file without an overflow:

(H 1) 2 (H 1 (S 1)) 0 (H 1 (S 1 (S 1)))

This is similar to Example-I except that the head of the access path is located through hashing, and that a
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node is of one record.

Example-3. Accessing an inverted file as shown in Figure I (a):

(P 3 (P 1 (S 1)) (P 1 (S 1)) (P 1 (S I)))

The path, whose head is located through a pointer, contains a key value and three chains. Each chain is also
located through a pointer, and each has one node. Each node shares the same address with the chain, and is of
one record. Since all the chains are identical, we need not repeat the descriptor for each chain. Then the
expression is abbreviated to:

(P 3 (P I (S 1l)

In general, there will be n chains:

(P n (P 1 (S 1)))

Ki K.

R, I( R I R, I  I R, R R

(a) an Inverted File (b) a Multilist File

Figure 1: Structures for an Inverted File and a Multilist File (n = 3)

Example-4. Accessing a multilist file, as shown in Figure 1 (b):

(P 1 (P 3 (S 1) (P 1) (P 1)))

The path, whose head is located through a pointer, has one chain. The chain is located through a pointer, and
has three nodes, each of which has one record. The first node shares the same address as the chain, and the
subsequent nodes are located through pointers. Since the second node and the third node are identical, the
expression can be abbreviated to:

(P 1 (P 3 (S 1) (P 1)))

In general, there will be a chain of n nodes:

(P I (P n (S 1) (P 1)))

Note the difference from the expression for an inverted file in Example-3.

Example-5. Accessing a cellular inverted file, where each node is a cellular block of size b:

(P - (P 1 (S b)))
@1 b

This example is similar to Example-3, but the path has - chains. Each chain has one node, which consists of
b

b records.

Example-6. Accessing a cellular multilist file, where each node is a cellular block of size b:

(P 1 (P - (S b) (P b)))
b

Similar to Example-5, but the chain has - nodes, each of which consists of b records. Note that we can
b

to



repeat the descriptor for the second node, (P b), - - 1 times.
b

Example-7. Accessing an ISAM file with the master index in core:

(M 1 (P 1 (P 1)))

An entry in the master index, which resides in the main memory, points to the head of a single chain,
corresponding to a directory entry. The chain consists of a node, which consists of a single record. The head
of the node is located through a pointer. If the file has an overflow chain of n nodes, each of which is a single
record, the access path expression is:

(Mi (P n+1 (P 1)))

Example-8. Accessing a hashed file with an overflow chain of n records:

(Hi1 (P P1 (S 2.) (P 1))

The access path is located by hashing, and has a single chain. The chain has n nodes, each of which has a
single record. The head of the chain is located through a pointer, and shares the same address with the fead
of the first node.

3.32. Access Path Expression for Multiple Files

Thus far, we have discussed access paths involving only one file. When two or more files are involved in an
access, the composite access path is represented by the combination of the individual file paths. There are two
criteria to determine the relationship between two files. One is ordering, which determines whether two files are
ordered or not. If ordered, they are accessed in serial, where one file path always precedes the other one. If
unordered, there is no restriction on ordering, so two files may be accessed in parallel. The other criterion is
whether only one file needs to be accessed, or both files should be accessed. Obviously, if both files should be
accessed, the ordering information between the two files must be known. With this restriction, the two criteria lead
to five possible combinations as follows.

(1) [ FilePath1 ; FilePath2 ]
Two files are accessed in serial, like the temporally partitioned storage structure discussed elsewhere [Ahn
1986].

(2) [ FilePath, , FilePath2 I
Both files need to be accessed, but there is no fixed ordering, like a horizontally partitioned relation [March &
Severance 1977].

(3) [ FilePath1 ?; FilePath2 I
The first file is accessed. If it is unsuccessful, then the second file is accessed. An example is a differential
file [Severance 1976].

(4) [ FilePath ?, FilePath2 2
Either of the two files is accessed. If it is unsuccessful, then the other file is accessed. An example is a
vertically partitioned relation [Ceri & Pelagatti 1984].

(5) [ FilePath ? FilePath2 2
Only one of the two files needs to be accessed, and which one to access is known. An example is a
differential file with the Bloom filter in main memory [Gremillion 1982]:

[ (M 1) ; ( FilePath ? FilePath2 1

,@1 Example-9. Accessing a file with reverse chaining:
An example of the temporally partitioned storage structure is reverse chaining, in which all history versions
of each version set are linked in reverse order starting from the current version [Ahn 1986]. Once the current
version is located in the current store, its predecessors can be retrieved without scanning the whole history
store. Figure 2 shows the structure diagram.
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K1  86

K, ~ 83>

K, 84

Figure 2: Reverse Chaining

The access path expression for -this structure is:

[ FilePathI ; (P n (S 1) (P 1))

where FilePath I is for the current store, and n is the number of history versions. This expression shows hat
there is a single chain. The head of the chain is located through a pointer, and the chain has n nodes. Each of
the node is of one record, and is connected to the predecessor by a pointer.

Example- 10. Accessing a path composed of three files:
It is also possible to involve more than two files in various combinations. If they are accessed in sequence
like a three level store, the access path expression is:

[ [ FilePathI ; FilePath2 ] ; FilePath3 ]

If they are in the shape of a tree, as in Figure 3 (a), file 1 is accessed first, then the other two files are accessed
in any order. The access path expression is:

[ FilePathI ; ( FilePath2 , FilePath3  ]

In Figure 3 (b), files 1 and 2 are accessed in any order, then then the third file is accessed. The access path
expression is:

FilePath1  , FilePath2 I;FilePath3 I

[ l!filel filel fil e2

(a) a tree (b) a graph

Figure 3: Access Paths with Three Files

BNF syntax of the access path expression involving multiple files is given in Appendix A.5.
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In summary, the access path expression represents access paths, taken through a storage structure to satisfy a
request represented by a file primitive expression, with the access path expression augmented with a set of file
parameters. The access path expression is simple and well-defined, yet versatile in representing a variety of access
methods which may involve more than one file. The access path expression is loosely based on four models
described in Section 2. It captures the concepts of the sublist in [Hsiao & Harary 1970], data direct/indirect and
address/pointer sequential in (Severance 19751, hierarchy of levels in LYao & Merten 19751 and a set of parameters
in [Batory & Gotlieb 1982], but extends them significantly in a single framework.

3.4. Transformation to the.Access Cost
From an access path expression, we can estimate the access cost in terms of random and sequential access

counts. We can also calculate the elapsed time based on the characteristics of storage devices.

3.4.1. Access Count

Given an access path expression, it is possible, though not necessary, to parse the expression, and derive an
access path graph (APG). In the graph, each component is denoted as a vertex, while relationships among
components are denoted as an edge marked with the associated mode. For an access path involving a single file, the
graph results in a tree, with the vertex forfile path as the root. Access path graphs for the access path expressions in
Example-3 and Example-4 are shown in Figure 4. While there is a similarity between the structure diagram in
Figure 1 and the access path graph in Figure 4, this is not always the case. For example, the structure diagram for a
sequential file or a hashed file is not a graph, though the corresponding access path graph is. The access path graph
is only conceptual, and not necessarily tied to the physical structure itself.

P P
r] access path '

P 
IP

S 0 h as

i P p
0 0 0 nodes moo

(a) an inverted file (Ex-3) (b) a multilist file (Ex-4)

(P 3 (P 1 (S 1))) (P I (P 3 (S 1) (P 1)))

Figure 4: Access Path Graphs (n = 3)

The access path graph not only visualizes the process of accessing files, but also represents the cost incurred
0,0 in traversing an access path by the length of the path. In fact, it is possible to estimate the access cost in terms of

random and sequential access counts (AC) either from the access path graph derived from the access path
expression or directly from the access path expression, based on the modes to connect components. The rules to
estimate the upper bound for the access count are:

R (Hashing) (I + a) random accesses, where a is determined by the overflow handling method
P (Pointed) 1 random access
A (Adjacent) 1 sequential access
S (Same-as-before) no access cost
I (Main-memory) no access cost
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0 (Ordered) logarithmic search (0 (log

U (Unor:,.ed) : sequential search (L +)
2b

3.4.2. Characteristics of Storage Devices

'P There are many parameters affecting the performance of storage devices, such as the medium type, fixed or
moving heads, read/write or write-once, seek time, transfer rate, number of cylinders-tracks-sectors, sector size, etc.
For the purpose of this research, we adopt a representation to characterize the performance of storage devices with
two parameters. They are t,, time needed to access a block randomly, and r., time needed to access a block
sequentially. Given the count of random and the sequential accesses, e.g. from the access path expression, it is
possible to estimate the time required to satisfy the request.

For a typical moving head disk, the time needed to access a block randomly is the sum of seek time. rotational
delay, and data transfer time.

tu =- tseek + td + lg,

The average seek time, t,,,k, assuming uniform distribution of seek distances, is:
(ts* tc-i 2(c - i)

I 2 -

C -c

where ti is the seek time for distance over i cylinders, and c is the total number of cylinders for the disk [Wiederhold
1981]. The average rotational delay, t,, is the time for one half revolution, and the data transfer time, t, is the
block size divided by the data transfer rate.

Ideally, accessing a block sequentially is free of any head movement and even the rotational delay.

tae = tip

However, a logically sequential block may not be physically adjacent under many operating systems, e.g. Unix,
which may allocate a block to a file randomly from the pool of free pages [Stonebraker 1981]. Even when the block
is physically adjacent, it is highly probable in a multi-process system that another process sharing the disk disrupts
the sequentiality by moving the head to another sector or cylinder.

Another factor to be considered is the difference between the block size of the database management system
and the page size of the operating system. Let b, be the block size of the database management system, and let p,
be the page size of the operating system. If bd6 is bigger than po5 , it takes extra disk accesses to retrieve one
database block. In the opposite case, which is actually the case in the prototype used for comparison, some

psom

sequential blocks are already in the main memory with the effect of read-ahead. If we let n = -s---, the average tsa
in a multi-process environment will be:

-~ (I. + 4d, + n X ,ta n

3.4.3. Elapsed Time
An experiment was run to measure the average t,, and t. on a moving head disk connected to a Vax/780.

Here, the file used for sequential access was in fact physically contiguous. The result is shown in Figure 5. We use
the time for an average load in estimating elapsed time to process sample queries in Section 4. Given the random
and the sequential access counts, we can calculate the elapsed time using appropriate numbers from the table in
Figure 5.
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Low Load Average Load High Load

Sequential 16.9 18.4 19.9

Random 24.8 31.3 37.8

Figure 5: Time (in msec) to Access a Block

4. Performance Analysis

With the model consisting of a series of transformations just described, it is possible to analyze the input and
output cost to process TQuel queries. Any complex query involving more than two relations can be decomposed
into simpler queries of two or less relations [Wong & Youssefi 1976]. Hence a TQuel query can be transformed to
an algebraic expression, which consists of algebraic operators involving one or two relations, representing the
strategy used to process the query. This step is performed by the parser and the semantic analysis portion of a
TQuel query processor. While our model abstracts the details of various representational decisions, it does not
encode query processing strategies such as decomposition nor query optimization techniques such as moving a
selection across a cartesian product. These strategies are encapsulated in the query processor.

tategy Expression

FiePiiieCharacteristics of

-wo

Cost Storage Devices

Figure 6: Performance Analysis with the Model

Ii The algebraic expression is then transformed into the file primitive expression based on the characteristics of

database/relations. Next, the file primitive expression is transformed into the access path expression, and eventually
to the access cost in terms of random and sequential access counts. Finally, the access count is converted to the
elapsed time according to the characteristics of storage devices. These steps are illustrated in the Figure 6, where
we show the processing strategy in a dotted box to denote that the processing strategy is not a part of our model.
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4.1. Examples
We now show how we can use our model to analyze the performance of temporal queries in TQuel. For

example, both of the algebraic expressions AE- 1 and AE-2, shown in Section 3.1.2, represent the TQuel query:
range of h is relation h

retrieve (h.id, h.seq) where h.id - 500

Since AE.2 provides more information on how to process the query, let's evaluate the input and output cost for
AE-2 using our model. We first try the case where the characteristics of database/relations shows that
relation h is a hashed file with no overflow records. Then transforming the algebraic expression to the file
primitive expression:

Read (Hash, 0)

which is the same as FPE-1 shown in Section 3.2.1. This is in turn transformed to the access path expression:

(H i)

whose access cost is

AC = C (APE) = C ((H 1)) = 1 random access = 31.3 msec

where the average time to perform I random access is found to be about 31.3 msec according to the characteristics
of storage devices.

If the characteristics of database/relations shows that relation h is a hashed file with 14 overflow
• records, then its file primitive expression becomes:

Read (Hash, 14)

Now the corresponding access path expression is:

(H 1 (P 14 (S 1) (P 1)))

Its access cost is
* AC = C (APE) = C ((H I (P 14 (S 1) (P 1)))) = 15 random accesses = 470 msec

"I" For another example, algebraic expressions AE-3, AE-4, and AE-5 can all be considered as representations of
Z. the TQuel query:

range of h is relation_h
range of i is relation i
retrieve (h.id, i.id, i.amount)

where h.id - i.amount
V when h overlap i and i overlap "now"

Let's choose AE-5, as shown in Section 3.1.2, and evaluate its input and output cost.

AE-5: { LI: When (i, i overlap "now");
L2: Project (Li, i.id, i.amount, i.valid from, i.validto)];
L3: Temporary (L2);
L4: Join (h, L3, TS, h.id - i.amount and h overlap i):

* Project (L4, h.id, i.id, i.amount) 1)

First, assume that the characteristics of database/relations shows that relation h is a hashed file and
relation i is an ISAM file, each without any overflow records. It also shows that the size of relation iis
128 blocks, the size of the temporary relation is 19 blocks, and there are 1024 tuples in the temporary relation. Then
AE-5 is transformed to to the file primitive expression:

Read (Heap, 128) +
Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - i +
Read (Heap, 19) +
Read (Hash, 0) * 1024)
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which is in fact the same as FPE-2 shown earlier. The first Read primitive accounts for the When and the
Project operations, the second Read and the write primitives account for the Teporary operation, and
the third and the fourth Read primitives account for the Join and the Project operations.

Now the Read operations in the file primitive expression are transformed to the access path expression for
. input:

(U 128) +
(U 19) * 2 - 1 +
(U 19) +
(H 1) * 1024

Likewise, the Write operation in the file primitive expression is transformed to the access path expression for
output:

(U 19) * 3 - 1

Now, the access cost for input is:
ACi = C ((U 128)) + C ((U 19) * 2 - 1) + C ((u 19)) + C ((H 1)) * 1024

= 1028 random accesses + 180 sequential accesses = 35.5 sec

and the access cost for output is:

AC. = C ((U 19) * 3 - 1)
= 3 random accesses + 53 sequential accesses = 1.07 sec

Let's consider the case where relation h is a hashed file, and relation i is an ISAM file, but both
of them are temporal relations with the update count of 14 according to the characteristics of database/relations.
Then on the average, there are 28 overflow records for each tuple, since each replace operation inserts two
versions into a temporal relation. We also assume that the size of relation i is 3712 blocks, which is 128
blocks multiplied by 29, that the size of the temporary relation is 19 blocks, and that there are 1024 tuples in the
temporary relation. Now the file primitive expression corresponding to the algebraic expression AE-5 becomes:

Read (Heap, 3712) +
(Read (Heap, 19) * 2 - 1 +
Write (Heap, 19) * 3 - 1 ) +

Read (Heap, 19) +
Read (Hash, 28) * 1024

As in the previous example, the first Read primitive accounts for the when and the Project operations, the
second Read and the Write primitives account for the Teruporary operation, and the third and the fourth
Read primitives account for the Join and the Project operations. This is transformed to the access path
expression for input:

(U 3712) +
(U 19) * 2 - 1 +
(U 19) +
(H 1 (P 28 (S 1) (P 1))) * 1024

and the access path expression for output:

(U 19) * 3 - 1

Then, the access cost for input is:

AC, = C ((U 3712)) + C ((U 19) *2- 1) + C ((U 19))
+ C ((R 1 (P 28 (S 1) (P 1)))) * 1024

= 29700 random accesses + 3764 sequential accesses = 999 sec

and the access cost for output is:

AC. = C ((U 19) *3- 1)
= 3 random accesses + 53 sequential accesses = 1.07 sec

for output according to the characteristics of storage devices.
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4.2. Validation

A prototype temporal DBMS was built by extending the snapshot DBMS INGRES. It supports the temporal
query language TQuel, handling all four types of databases: snapshot, rollback, historical and temporal.

range of h is temporalh /* hashed on id */

range of i is temporali /* ISAM on id "/

Q01 retrieve (h.id, h.seq) where h.id - 500

Q02 retrieve (i.id, i.seq) where i.id - 500

Q03 retrieve (h.id, h.seq) as of "08:00 1/1/80"

Q04 retrieve (i.id, i.seq) as of "08:00 1/1/80"

Q05 : retrieve (h.id, h.seq) where h.id - 500
when h overlap "now"

Q06 : retrieve (i.id, i.seq) where i.id = 500
when i overlap "now"

Q07 : retrieve (h.id, h.seq) where h.amount = 69400
when h overlap "now"

Q08 : retrieve (i.id, i.seq) where i.amount - 73700
when i overlap "now"

*Q09 : retrieve (h.id, i.id, i.amount) where h.id - i.amount
when h overlap i and i overlap "now"

Q10 : retrieve (i.id, h.id, h.amount) where i.id - h.amount
when h overlap i and h overlap "now"

Q11 : retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of h to end of i
when begin of h precede i
as of "4:00 1/1/80"

Q12 : retrieve (h.id, h.seq, i.id, i.seq, i.amount)
valid from begin of (h overlap i) to end of (h extend i)
where h.id - 500 and i.amount - 73700
when h overlap i
as of "now"

Q13 retrieve (h.id, h.seq) where h.id - 455
when "1/1/82" precede end of h

Q14 retrieve (h.id, h.seq) where h.amount - 10300
when "1/1/82" precede end of h

Q15 retrieve (h.id, h.seq) where h.amount - 10300
as of "1/1/83"

Q16 retrieve (h.id, h.seq) where h.amount - 10300
when "1/1/82" precede end of h
as of "1/1/83"

Figure 7: Benchmark Queries
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We augment each tuple of a rollback or a temporal relation with two temporal attributes for transaction time, and
each tuple of a historical or a temporal relation with one or two temporal attributes for valid time. The prototype
also supports append, delete, and replace statements of TQuel for all four temporal types [Ahn &
Snodgrass 1986].

To compare performance on different types of databases, we created test databases of all four temporal types:
Snapshot, Rollback, Historical, and Temporal. For each of the four types, we created two
databases, one with a 100% loading factor and the other with a 50% loading factor. A loading factor of 50%, for
example, specifies that 50% of each primary data page is initially reserved free for future growth. Each database
contains two relations, one with the structure of hashing and the other with the structure of ISAM.

A benchmark of sixteen queries, shown in Figure 7, was run to study the performance of the prototype on the
C " test databases. The input costs for each type of databases with the update count of 0 and 14 are shown in Figure 8.

Type Snapshot Rollback Historical Temporal
I Loading 100% 50% 100% 50% 100% 50% 100 % 50%

UC U C U C UC UC U C UC U CQuery 0 0 0 14 0 14 0 14 0 14 0 14 0 14

QOl 2 1 1 15 1 8 1 15 1 8 1 29 1 15
Q02 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Q03 - - 129 1927 257 2048 - - - - 129 3717 257 3839
Q04 - - 128 1920 256 2048 - - - - 128 3712 256 3840
Q05 2 1 1 15 1 8 1 15 1 8 1 29 1 15
Q06 2 3 2 16 3 10 2 16 3 10 2 30 3 17

I Q07 166 257 129 1927 257 2048 129 1927 257 2048 129 3717 257 3839
Q08 114 256 128 1920 256 2048 128 1920 256 2048 128 3712 256 3840
Q09 1585 1276 1141 17242 1271 10240 1197 17298 1327 10296 1200 33350 1333 19256
Q10 2214 3329 2177 18311 3329 12288 2233 18367 3385 12344 2233 34493 3385 21303
QI1 - - - - - - - - - - 385 11141 769 11519
Q12 - - - - - - - - - - 131 3743 259 3857
Q13 - - - - - - 1 15 1 8 1 29 1 15
Q14 - - - - - - 129 1927 257 2048 129 3717 257 3839
Q15 - - 129 1927 257 2048 - - - - 129 3717 257 3839
Q16 - . . . . . . . . 129 3717 257 3839

Notes:
'UC' denotes Update Count. '-' denotes not applicable.

Figure 8: Measured Input Costs for Four Types of Databases

The sample queries were also analyzed using the model discussed in Section 3. To compare the cost
estimated from the analysis with the actual cost measured from the benchmark (Figure 8), we calculate the error
rate as:

Error Rate = a -b x 100 %
b

where
a = cost estimated from the analysis
b = cost measuredfrom the benchmark

Figure 9 shows the error rate for each data point. It shows that error raies are generally within about 1% for
the rollback, historical, and temporal databascs. Interestingly, the biggest errors are found for the snapshot
database. The reason is that a snapshot relation with 100% loading can hold 9 tuples, compared with 8 tuplcs for
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other types of relations with tume stamps in each tuple, but the larger number of tuples per block caused extra key
collisions due to imperfect nature of the hash function used for hashing. For example, a snapshot relation which can
hold 9 tuples per block consumed 166 blocks for 1024 tuples, not 114 tuples as expected for a perfect hashing
[Sprugnoli 1977]. As a result, query Q07 costs 166 blocks accesses to scan a hashed relation, and query QOI costs
two block accesses, not one as expected for hashing, to retrieve a tuple through a hashed key. The unpredictability
of key collisions is less visible for other types of relations, which hold a smaller number of tuples per block to
incorporate time attributes, but it still contributes to discrepancies between the analysis results and the actual
measurements.

I Type Snapshot Rollback Historical Temporal
-,Loading 100% 50% 100% 50% 100% 50% 100% 1 50%

Query UC. U.C. U.C. U.C. U.C. U. I U.
00 0 1 14 01 014 04 0 14 0 14 01 14

Q01 -50 Z Z Z Z Z Z Z Z Z Z Z Z Z
Q02 Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Q03 - - -1 -0 -0 Z .1 W,0 - 0 -0
Q04 - - Z Z Z Z . . . . Z Z Z Z
Q05 -50 Z Z Z Z Z Z Z Z Z Z Z Z Z
Q06 Z Z Z Z Z Z Z Z Z Z Z Z Z Z
Q07 -31 -11 -1 -0 -0 Z -1 -0 -0 Z -1 W0- 0 -0
Q08 Z -11 Z Z Z Z Z Z Z Z Z Z Z Z
Q09 -25 +3 +1 -0 +1 Z +1 -0 +1 Z +1 -0 -0 Z
Q10 -0 +1 -0 -0 -0 Z 0 -0 .0 Z W0 =0 ,0 -0
QI1 - - - - - - - - 0 =0 -0
Q12 . .. . . .. . . . Z Z Z Z
Q13 . .. . . . Z Z Z Z Z Z Z Z
Q14 I W - 1 01 0Z
Q15 - - -1 0 0 Z I 1 -0 -0,
Q16 .1 -0 - 0 -0

Notes:
'U.C.' denotes Update Count. - denotes not applicable.
'Z' denotes zero error. '-0' denotes close to zero.

Figure 9: Percentage Error Rates in the Analysis Results

We also measured the elapsed time to process the sample queries on the prototype. Figure 10 compares the
Smeasured time with the estimated time based on the characteristics of storage devices. This table shows that the

differences between the measurement and the estimation is generally between 10 and 30%. There are many factors
to affect the elapsed time to process a query, other than input and output costs; examples are the CPU speed,
machine load, scheduling policy, and buffer management algorithms. Though we analyzed only input and output
costs, we could still estimate the elapsed time rather closely.
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Update Count = 0 Update Count = 14
Query Measured Estimated Error Rate Measured Estimated Error Rate

(sec) (sed) (no (see) (sec) M _

Q09 44.8 36.5 -18.5 1277 1001 -21.6
QI0 61.2 68.5 11.9 1187 1031 -13.1
QI1 7.8 7.1 -9 140 205 46.4
Q12 4.0 2.5 -37.5 62 69.2 11.6

Figure 10: Elapsed Time

5. Performance Analyzer
Based on our model consisting of a series of transformations, it is possible to construct a system that can

automate the process of computing the 1/O cost given a collection of TQuel queries as input. The internal structure
of the performance analyzer is shown in Figure 1I.

".Parser Sequencer Evaluator 0

L-- ---- - - ------

Database/

Characteristics of Relations

Storage
Devices

Figure 11: Performance Analyzer for TQuel Queries

The parser will take TQuel queries and generate a parse tree. The sequencer converts the tree into an
algebraic expression consisting of algebraic operators and connectives as described in Section 3.11. Since TQuel is
a non-procedural language based on the tuple calculus, there are many ways to process a TQuel query, and many
variations of algebraic expressions. The sequencer is the embodiment of the query processing and optimization
strategy for a particular database management system.

The resulting algebraic expression is processed by the evaluator to compute the input and output cost. The
evaluator converts the algebraic expression to the file primitive expression based on the characteristics of
database/relations. Next. it converts the file primitive expression to the access path expression, and eventually to the
access cost based on the characteristics of storage devices.

,. The performance analyzer can be used to test and analyze various alternatives in the design of new access
methods, database configurations, or query processing strategies, eliminating the tedious process of case by case
implementation or simulation. In this paper, we analyzed the performance of sample queries manually, but in the
same manner the analyzer would have employed.

The analyzer can be extended to be an optimization tool by providing a feedback path, as shown by a dotted
line in Figure II, from the evaluator output to the sequencer. The sequencer can generate all possible algebraic
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expressions (or a significant subset of them) for an input parse tree, and can choose the one with the lowest input
and output cost as computed by the evaluator. The algebraic expression chosen that way represents the best strategy
to minimize the cost of processing the query.

6. Conclusions

Performance analysis of a database management system depends on the quality of the models to characterize
various phases of query processing. We presented a model to analyze the input and output cost of temporal queries
on the database with various access methods. The model consists of four transformations through a series of
intermediate expressions based on the characteristics of database/relations and storage devices. A temporal query is
mapped to an algebraic expression which is transformed to a file primitive expression. A file primitive expression,
in turn, is transformed to an access path expression, and finally to the access cost. Since conventional databases are
subsets of temporal databases, the model can be used to analyze the performance of conventional databases as well.

We showed examples of using the model to analyze the I/O cost of temporal queries. We validated the model
by comparing the I/O cost estimated from the analysis with the actual cost measured from a prototype temporal
DBMS. The result indicated that the cost of a query in terms of block access counts can be estimated quite
accurately (generally within about 1%) using the model. Elapsed time to process a query, according to
characteristics of storage devices, was generally between 10 and 30% of the actual measurements.

Our model, however, does not represent the query processing strategy of a DBMS, nor to estimate the CPU
cosL While we believe that the benchmark in Section 4.2 covers representative operations in the temporal database,
we have not included modification statements, aggregates, or queries involving more than two relations. We also
limited our discussion to access methods of heap, hashing, and ISAM in this paper, though we have applied the
model to the prototype that has been extended with a form of two level storage structure [Ahn 1986B]. In the
future, we plan to analyze the performance of modification statements, queries with aggregates, and queries of more
than two relations. We also plan to study the applicability of the model to temporal algebra based on attribute
versioning [McKenzie 1988], as opposed to tuple versioning, and storage structures for optical disks. Finally, we
are implementing the performance analyzer so that it may aid us in these experiments.
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Appendix

A.1. BNF Syntax of the Algebraic Expression

<alg exp> <query>

I <aIg exp> <query>

<query> { <access> I

<access> <access term> I <access> <access term>
<access term> <term> I <term>

<term> <label oper> ( <term> <order> <label oper>
<label oper> <oper> I <label> : <oper>

<order> ; I ,
<label> <identifier>

<oper> <Conventional> I <Temporal> I <Auxiliary>

<Conventional> Select ( <rel>, <predicate>)
I Project ( <rel>, <attribute list>)
I Join ( <rel>, <rel>, <join method>, <predicate>)
I Union (<rel>, <rel>)
I Difference (<re>, <rel>)

<Temporal> When (<rel>, <temporal pred>)
I AsOf (<rel>, <event expr> , <event expr>
I Valid (<rel>, <FTA>, <event expr>

<Auxiliary> Temporary (<label>)
I Sort (<rel>, <attribute list>)
I Reformat (<rel>, <storage spec>, <attribute list>)

<FTA> From I To I At

, <attribute list> <attribute>
I <attribute list> , <attribute>

<rel> <rel identifier> I <label>

In this description, <temporal pred> is a temporal predicate involving time attributes and temporal predicate
operators such as precede and overlap in TQuel. <event expr> is an event expression involving time
attributes and temporal constructor operators such as extend and overlap in TQuel, which yields a time value
as its result. <storage spec> specifies one of the storage structures such as heap, hash, isam. or a bt ree.
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A.2. BNF Syntax of the File Primitive Expression

<fpe> <term>
I <fpe> <additive op> <term>

<term> <primitive>
I <term> <multiplicative op> <primitive>

<primitive> <operator> ( <access method> <parameter list>
(<fpe>)

<operator> Read
Write

<parameter list> <parameter>
I <parameter list> <parameter>

<parameter> <integer constant>

<additive op> + I -

<multiplicative op> * I /

<access method> heap I hash I isam Ibtree

-2O,

0.



A..3. BNF Syntax to Represent the Characteristics of Database/Relations

<database> <name> , <relation list>
<name> <identifier>

<relation list> <relation> I <relation list> , <relation>

<relation> <name> , <attribute list>
<temporal type> , <storage type>
<tuple count> , <update count>
<loading factor> , <block Size>
<key list>

<attribute list> <attribute> I <attribute list> , <attribute>

<attribute> <name> , <value type>
<length> , <selectivity>
<volatility>

<temporal type> snapshot I rollback I
historical interval I historical event I
temporal interval I temporal event

<storage type> heap I hash I isam I btree

<key list> <key> I <key list> , <key>
<key> ( <name> , <attribute list>

<value type> type integer I type rational I
type string I type boolean I

S. type time
<tuple count> <integer constant>

<update count> <integer constant>

<loading factor> <float constant>
<block Size> <integer constant>
<length> <integer constant>
<selectivity> <float constant>
<volatility> <float constant>

In this description, a database consists of a name and a set of relations. Each relation consists of a name and various
information on the relation. For example, <temporal type> specifies one of six possible temporal types, and
<storage type> specifies the storage structure of the relation.
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A.4. BNF Syntax of the File Path Expression for a Single File

<APE> <file path>

<file path> ( <descriptor> <chains>
<descriptor> <Mode> <count>

<chains> <chain>
I <chains> <chain>

<chain> ( <descriptor> <nodes>

<nodes> <node>
<nodes> <node>

<node> ( <descriptor>

<Mode> H
P
A
S

0
I U

* <count> <integer constant>

A.5. BNF Syntax of the Access Path Expression for Multiple Files

<APE> <term>
I <APE> <additive op> <term>

<term> <access path>
I <term> <multiplicative op> <access path>

<additive op> + I -

<multiplicative op> * I /

<access path> <file path>
I [ <access path> <single> <order> <file path>

<APE>)

* <single> ?
<order>
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